459 F.2d 531 | C.C.P.A. | 1972
This appeal is from the decision of the Patent Office Board of Appeals affirming the examiner’s rejection of claims 7-19 in appellant’s application.
The Invention
The invention relates to catalysts for vapor phase partial oxidation of ethylene to ethylene oxide. Claims 7 and 15, the only independent claims in the case, read as follows:
7. A process for preparing a silver-supported catalyst for the improved production of ethylene oxide, said process comprising the steps of
(a) forming an aqueous solution of silver salt,
(b) immersing completely in said solution a carrier of inert, porous particles characterized by an average diameter not larger than about 3/16 inch, an average pore diameter of about 10 to 70 microns, and a surface area less than about one square meter per gram,
(e) impregnating said particles with said solution by soaking said particles therein for a period of at least about 5 minutes at a temperature of about 90° to 95° O, thereby permitting capillary action to fill effectively the pores of said particles with said solution,
(d) separating the impregnated particles from the remainder of said solution,
(e) drying the separated particles, whereby said silver salt is deposited uniformly throughout the pores of said particles, and
(f) activating the dried particles by heating them in air at a temperature sufficient to decompose the deposited silver salt, [letters (a), (b), etc. supplied.]
15. An oxygen-activated catalyst for use in the controlled catalystic [sic] oxidation of ethylene to ethylene oxide, said catalyst comprising about 5 to 25% by*1038 weight of silver, said silver being tlie thermal decomposition product of a pore solution-deposited silver salt uniformly distributed throughout the pores of inert, porous particles having an average diameter not larger than about 3/16 inch, an average pore diameter of from 10 to 70 microns, and a surface area less than about one square meter per gram.
Claim 8 places the temperature of step (f) at 200-300° C. Claim 9 recites that the solution formed in step (a) is 25-80% silver. Claim 10 specifies that the solution is formed in step (a) by adding silver oxide to an aqueous carboxylic acid solution. In claim 11 the carboxylic acid is lactic acid. Claim 12 adds an oxidizing agent to the solution to prevent premature reduction of the silver salt. Claim 13 adds an alkaline earth promoter to the solution. Claim 14 recites further specifics of the drying step (e). Product claims 16-19 depend on claim 15. Claim 16 recites a particle size of 1/16-3/16 inch. Claim 17 recites an apparent porosity of 48-54%. Claim 18 recites a surface area of 0.1 to 0.2 square meters. Claim 19 requires the particles to contain silica-alumina.
Appellants allege that their catalysts have both high selectivity and high productivity. Selectivity is a measure of the ability of a catalyst to prefer the partial oxidation reaction of ethylene over the total oxidation of ethylene to carbon dioxide. It is reported as the percentage of ethylene molecules oxidized which become ethylene oxide. A catalyst with high productivity produces a large amount of ethylene oxide per unit of catalyst and per unit of time.
The References
Aries
McClements et al. (McClements)
That the silver catalyst must be activated by converting the silver oxide thermally to metallic silver is known. This is generally accomplished on commercial scale by treating the catalyst in large trays for several hours in a forced draft hot air oven at about 400° 0.
McClements found improved results if the activation temperatures were only 250-340° C. McClements is also relied on for his statements about carriers:
Any of the known carriers employed in the production of silver surface catalysts used for catalyzing olefin to olefin oxide reactions [s] may be used. Silica, fused alumina refractory materials, and beryllium oxide, including Alusite and Alundum, of a convenient size, say %" to W, preferably may be used as. the carrier.
McClements also supports the use of a barium promoter material.
Ameen
So far as it is known, the prior catalysts made from commercially available alumina have varying degrees of porosity which may be as much as 65% with a large number of small pores averaging in diameter about 2-30 microns. According to the present invention, the number of pores is considerably reduced and the remaining pores enlarged to diameters within the range of about 80-200 microns, preferably 100-150 microns, while maintaining a relatively high porosity of about 40-50 percent.
While he does use the word impregnate in describing his catalyst deposition process, it is clear from a reading of the whole patent that he uses a slurry coating technique. He states that his catalyst pellets “may be as large as in diameter.”
Hill
The Rejection
All the claims were rejected under 35 USC 103 as unpatentable over Aries combined with McClements et al. and Ameen. In the examiner’s opinion the Ameen and McClements patents rendered it obvious to use a support having the physical characteristics recited in the claims and to use the Aries impregnation method. The examiner also considered that it would have been obvious to activate the Aries catalysts by heating in air at a temperature within the terms of the present claims in view of McClements.
The board generally adopted the examiner’s reasoning. It pointed out that the physical characteristics discussed by Ameen, which overlap those recited in the claims, are those of the commercially available supports employed in prior art catalysts, which it would clearly be obvious to use. The board was also of the opinion that since Aries teaches his impregnation step as a cure for some of the difficulties encountered in the slurry deposition processes exemplified by McClem-ents, it would have been obvious to substitute the Aries impregnation step for the slurry deposition steps in the McClements process.
Opinion
I. The Process Claims
After a thorough review of the references of record,
The method of reduction is extremely important as an excessive amount of heat caused by the combustion of the organic material will result in a poor catalyst.
The only atmosphere utilized in his examples is an inert nitrogen atmosphere. In sum, the Aries patent itself teaches against the proposed combinations.
The solicitor argues:
The teaching of Aries that combustion should be avoided is not a warning that simple oxidation should be avoided, as interpreted by appellants (Br. 12-13). Of course, an “instance of burning” or consumption should be avoided. Moreover, the artisan of ordinary skill would be free to evaluate and question the teachings of Aries that nitrogen activation gives better results than activation in air or hydrogen. If air activation is best as argued by appellants, no reason appears as to why this would not readily be determined by the artisan of ordinary skill.
II. Product Claims 15-19.
In -order to be patentable, a product must be novel, useful and unobvious. In our law, this is true whether the product is claimed by describing it, or by listing the process steps used to obtain it.
In this case, instant claims 15-19 recite that the catalyst is “oxygen-activated” and comprises silver which is a “thermal decomposition product of a pore solution-deposited silver salt * * We find that the examiner reasonably concluded that, in spite of those recitations,
Comparing instant claim 15 with the McOlements patent, for example, we note that an activated catalyst is therein disclosed having 12-17% silver uniformity distributed throughout the pores of inert porous alumina particles “of a convenient size, say y8" to !/£", * * *.” As pointed out above, McClements states that the prior catalysts have pore diameters of 2-30 microns.
Appellant contends that certain of the recited ranges are critical and that the claimed catalysts must be different from those of the references because they give different results. In support of this, appellant points to certain comparisons of results obtained from catalysts having different properties including those of the claims and catalysts made in accordance with Hill and Aries patents. The examiner did not consider appellant’s data as being “truly comparative” and in his opinion “no definite conclusions can be drawn therefrom.”
After a thorough consideration of all of appellants’ evidence, we fully agree with the examiner’s conclusions. Since the examiner treated Example I of the specification as exemplary and appellants have dealt with it in their brief, we will confine our discussion to that example rather than deal at length with each piece of evidence proffered by appellants.
Appellants cite the data in Example I as support for the proposition that the 10 micron lower limit of the average pore diameter is critical. In their brief, the appellants allege that the following results are established in Example I:
Average pore diameter Silver content Particle diameter Selectivity (percent)
(microns) (weight percent) (inches)
10-15 10.88 Me 73
8.9 9.5 65
6.5 9.5-10.88 Me 62
The examiner pointed out that “the percentage of silver in the catalysts compared in Example I of the specification * * * was not kept constant and it is not clear how this contributed to the differences in the results.” Appellants argue that the effect of the percentage of silver contained in catalysts is shown by the following information which they extract from the Hill reference:
Hill example number Silver content Selectivity or efficiency (percent)
VI.Low. 58
IV.... Medium. 64
VII.High. 60
The conclusion is inescapable that increasing silver content within the range covered by Example I of appellants’ specification will have little effect upon selectivity but only on productivity. The parameter thus demonstrated to be essential to obtaining high selectivity by Example I of appellants’ specification is pore diameter and only pore diameter.
The conclusion appellants urge upon us is far from inescapable. In the first place, it is not clear where appellants get the “9.5-10.88” percent silver for the test which used catalysts having a 6.5 average pore diameter. The only thing that Example I states is that the s/16 inch catalyst was prepared in the same manner as the %6 inch and % inch catalysts except for the catalyst size and the average pore- diameter. Nowhere is it stated what percentage silver was on the activated catalyst. Further, the conditions used in examples IV, VI and VII in Hill were clearly different from those employed in appellants’ Example I, one notable difference being the different activation processes employed. Appellants have given us nothing from which we could conclude that Hill’s results and appellants’ results would correlate in spite of those differences. Finally, even accepting appellants’ figures and assuming that the Hill results would correlate with appellants’ results, the conclusion urged by appellants does not follow. One of the reasons argued by appellants for patentability is that their catalysts “achieve selectivities as high as 73% while the highest selectivity in any reference here of record is below 70%.” Thus, in spite of the obvious importance appellants attach to a change in selectivity of three percent, they ask us to examine data which indicates that a change of about six percent in the silver content
The decision of the board is reversed as to claims 7-14 and affirmedj as to claims 15-19.
Application Serial No. 612,731, filed January 30,1967.
U.S. Patent No. 2,477,435, issued July 26,1949.
U.S. Patent No. 2,S31,S70, issued April 22,1958.
U.S. Patent No. 3,172,893, issued March 9,1965.
Canadian Patent No. 592,091, issued February 9, 1960.
The solicitor cites other references in his brief which he alleges deal with heating organic silver salts to obtain the metallic silver. Since these references have not been relied on in the rejection at bar, we shall not consider them.
In re Pilkington, 56 CCPA 1237, 411 F.2d 1345, 162 USPQ 145 (1969); Saxe and Levitt, Product-by-Process Claims and Their Current Status in Chemical Patent Office Practice, 42 JPOS 528, 531—32 (1960); cf. Cochrane v. Badische Anilin & Soda Fabrik, 111 U.S. 293 (1884).
This presumes that Hill’s “low” silver content is at the bottom of the 7-16% range, and that his “medium” silver content is about 13%.